Programming Exercise 3:

Centralized Coordination
Model Solution

1. Conceptual overview of
solution

Considerations for any solution

* Representation:
* All relevant information about the complete solution and plan for all vehicles.

* Operators:
* Local variation
* Sufficiently small steps
 All possible solutions much be reachable via operations

* Optimization:
* Possibility of exploration even 1n a case of local optimum

Model solution overview

* The algorithm described 1n the paper modified to accommodate
carrying multiple tasks
* Simplified but equivalent representation of solution
* Modified changing task order operator

Primary changes in comparison to paper

* PDAction: Task + pickup flag
* Changes in ChangingVehicle:

* Remove both PDActions corresponding to task pickup and task delivery from
Vi

* Place PDAction for pickup and PDAction for delivery at the beginning of V2’s
plan

* Changes in ChangingTaskOrder

* Instead of swapping places of two tasks, the pickup and delivery locations of a
chosen task are changed 1n a plan

2. Overview of implementation

Files

* Three files:
* CentralizedTemplate: SLS Algorithm and plan generation
* Candidate: Class that represents a candidate solution, plus operators on it
 PD_Action: Task + pickup flag

Candidate: Representation of a solution

* Main information represented in "plan”

* List of sublists for each vehicle
* Each sublist 1s the plan of vehicle: PDActions in order

Vehicle 1: | Pickup T1 || Pickup T3 || Deliver T1 || Deliver T3 || Pickup T4 || Deliver T4

Vehicle 2: | Pickup T2 || Pickup T5 || Deliver T5 || Deliver T2

* Helper variables “taskList”, “vehicles”
* Cost 1n “cost”

SLS algorithm overview
1 Generate neighbours Candidate A = Candidate.SelectlInitialSolution(random, vehicles, task_list);
2, Choose best neigthur With boolean timeout_reached = false;

while(!timeout_reached) {

StOChaStiCity Candidate A_old = A;
. . . List<Candidat_e> N = A _old.ChooseNeighbours(random);
3. Terminate when timeout 1s A = LocalChoicelN, Aold)

reaChed (Obtalned from if(System.currentTimeMillis() - time_start > timeout_plan) {

logiSt Settings) : timeout_reached = true;
}

List<Plan> plan = PlanFromSolution(A);

Select initial solution

1. Get the vehicle with largest capacity

2. Assign all tasks to largest vehicle as two
sequential PD-Actions

int num_vehicles = vehicles.size();

List<List<PD_Action>> plans = new ArrayList<>();
List<List<Task>> taskLists = new ArrayList<>();
List<Task> allTasks = new ArrayList<>(tasks);

for (inti = 0; i < num_vehicles; i++) {
plans.add(new ArrayList<>());
taskLists.add(new ArrayList<>());

}

double vehicle_capacities[];
vehicle_capacities = new double[num_vehicles];
int largest_vehicle = MaxIndex(vehicle_capacities);

for (Task t : allTasks) {

List<PD_Action> plan = plans.get(largest_vehicle);
List<Task> tasks_vehicle = taskLists.get(largest_vehicle);

plan.add(new PD_Action(true, t));
plan.add(new PD_Action(false, t));

tasks_vehicle.add(t);

double initial_cost = 0.0;

for (inti = 0; i < vehicles.size(); i++) {
initial_cost += ComputeCost(vehicles.get(i), plans.get(i));

}

Choose neighbours: Changing vehicle

1. For each vehicle, obtain the
first task of the vehicle

2. Transfer the task to a random
vehicle with suitable capacity

3. Modity candidate variables
accordingly

List<Candidate> neighs = new ArrayList<>();

int num_vehicles = vehicles.size();

for (int vid_i = 0; vid_i < num_vehicles; vid_i++) {

List<Task> vehicle_tasks = taskLists.get(vid_i);

if (vehicle_tasks.size()==0) {
continue;

}

int task_id = 0;
double task_weight = vehicle_tasks.get(task_id).weight;

int vid_j = random.nextInt(num_vehicles);

while (vid_i == vid_j || vehicles.get(vid_j).capacity() < task_weight) {
vid_j = random.nextInt(num_vehicles);

}

10

Choose neighbours: Changing vehicle (fnc.)

. Updatmg taskLists:
Create copies of old lists

2. Remove the task from the taskList of
source vehicle

3. Place the task in the taskList of target
vehicle

Vehicle v_i = vehicles.get(vid_i);
Vehicle v_j = vehicles.get(vid_j);

List<Task> i_tasks_old = taskLists.get(vid_i);

List<Task> j_tasks_old = taskLists.get(vid_j);

Task t = i_tasks_old.get(task_id);

List<Task> i_tasks_new = new ArrayList<>(i_tasks_old);
i_tasks_new.remove(task_id);

List<Task> j_tasks_new = new ArrayList<>(j_tasks_old);
j_tasks_new.add(t);

List<List<Task>> updated_taskLists = new ArrayList<>(taskLists);
updated_taskLists.set(vid_i, i_tasks_new);
updated_taskLists.set(vid_j, j_tasks_new);

11

Choose neighbours: Changing vehicle (fnc.)

* Upda
1.

2.

ting plans
Create copies of old plans

Remove the pickup and delivery
actions of the task from source
vehicle plan

Insert the pickup and delivery actions
of the task to the target vehicle plan

List<PD_Action> i_plan_old = plans.get(vid_i);
List<PD_Action> j_plan_old = plans.get(vid_j);

List<PD_Action> i_plan_new = new ArrayList<>(i_plan_old);

for (int act_ind = 0; act_ind < i_plan_new.size();) {
PD_Action act = i_plan_new.get(act_ind);

if (act.task == 1) {
i_plan_new.remove(act_ind);
}
else {
act_ind++;
}
}

List<PD_Action> j_plan_new = new ArrayList<>(j_plan_old);

j_plan_new.add(0, new PD_Action(false,t));
j_plan_new.add(0, new PD_Action(true, t));

List<List<PD_Action>> updated_plans = new ArrayList<>(plans);

updated_plans.set(vid_i, i_plan_new);
updated_plans.set(vid_j, j_plan_new);

12

Choose neighbours: Changing vehicle (fnc.)

double i_cost_old = ComputeCost(v_i, i_plan_old);
double j_cost_old = ComputeCost(v_j, j_plan_old);

double i_cost_new = ComputeCost(v_i, i_plan_new);
double j_cost_new = ComputeCost(v_j, j_plan_new);
double updated_cost = this.cost - i_cost_old + i_cost_new - j_cost_old + j_cost_new;

* Updating cost
* Compute the difference of costs of

individual vehicles’ plans from the old
cost

* No need to recompute everything 13

Choose neighbours: Changing task order

* ChOOse a random taSk from for (int vid_i = 0; vid_i < num_vehicles; vid_i++) {
eaCh VGhiCle List<Task> vehicle_tasks = taskLists.get(vid_i);

o Randomly mOdify Candidate if (vehicle_tasks.size()<2){
variables to create a new A

ordering for the chosen task

int task_id = random.nextInt(vehicle_tasks.size());

neighs.add(ChangingTaskOrder(random, task_id, vid_i));

Choose neighbours: Changing
task order (function)

1. Remove pickup and delivery actions
associated from the plan

2. Place pickup action 1n a suitable place

* Loop until we find a place that satisfies weight
constraints

3. Place delivery action 1n a suitable place
* Ensure that 1t 1s placed after the pickup

* Cost update as 1t was before

List<PD_Action> i_plan_old = plans.get(vid_i);
List<PD_Action> i_plan_new = new ArrayList<>(i_plan_old);

for (int act_ind = 0; act_ind < i_plan_new.size();) {
PD_Action act = i_plan_new.get(act_ind);

if (act.task == t) {
i_plan_new.remove(act_ind);
}
else {
act_ind++;
I}
}

int vehicle_capacity = v_i.capacity();
int pickup_location = 0;
List<PD_Action> candidate_plan_pickup = new ArrayList<>(i_plan_new);

boolean done = false;
while (done==false) {
pickup_location = random.nextInt(i_plan_new.size());

candidate_plan_pickup = new ArrayList<>(i_plan_new);
candidate_plan_pickup.add(pickup_location, new PD_Action(true, t));

if(SatisfiesWeightConstraints(candidate_plan_pickup, vehicle_capacity)) {
done = true;
}
}

List<PD_Action> candidate_plan_delivery = new ArrayList<>(candidate_plan_pickup);
done = false;

while (done==false) {

int delivery_location_offset = random.nextInt(i_plan_new.size()-pickup_location);
int delivery_location = pickup_location + 1 + delivery_location_offset;

candidate_plan_delivery = new ArrayList<>(candidate_plan_pickup);
candidate_plan_delivery.add(delivery_location, new PD_Action(false, t));

if(SatisfiesWeightConstraints(candidate_plan_delivery, vehicle_capacity)) { 15
done = true;

}

L.ocal choice

1. Wlth pI’Obablhty p, I'etum the if (random..nextFloat() <p{
old solution. o

else {

2 . With pI'Obabﬂity 1 'p, I'etum int best_cost_index = 0;

double best_cost = N.get(best_cost_index).cost;

the best among the given set
of neighbours.

for (int n_ind = 1; n_ind < N.size(); n_ind++) {

if(N.get(n_ind).cost < best_cost) {

best_cost_index = n_ind;
best_cost = N.get(best_cost_index).cost;
}
}

return N.get(best_cost_index);

}

16

Ge n e r atin g p l a n frO m a for (int vehicle_ind = 0; vehicle_ind < A.vehicles.size(); vehicle_ind++) {
c an did ate S O l“tio n Vehicle v = A.vehicles.get(vehicle_ind);

List<PD_Action> plan = A.plans.get(vehicle_ind);

® For eaCh VGhiCle : City current_city = v.getCurrentCity();

Plan v_plan = new Plan(current_city);

1. Traverse throughout the actions 1n their plan
2. Add movement primitives to plan S
3. Add pickup or delivery primitives depending factis_pckup)

next_city = act.task.pickupCity;

on action type to plan e

next_city = act.task.deliveryCity;
}

for (PD_Action act : plan) {

for(City move_city : current_city.pathTo(next_city)) {
v_plan.appendMove(move_city);

}

if (act.is_pickup) {
v_plan.appendPickup(act.task);
}else {
v_plan.appendDelivery(act.task);
}

current_city = next_city;

plan_list.add(v_plan);

}

