
Programming Exercise 3: 
Centralized Coordination

Model Solution



1. Conceptual overview of 
solution



Considerations for any solution

• Representation:
• All relevant information about the complete solution and plan for all vehicles.

• Operators:
• Local variation
• Sufficiently small steps
• All possible solutions much be reachable via operations

• Optimization:
• Possibility of exploration even in a case of local optimum

2



Model solution overview

• The algorithm described in the paper modified to accommodate 
carrying multiple tasks
• Simplified but equivalent representation of solution
• Modified changing task order operator

3



Primary changes in comparison to paper

• PDAction: Task + pickup flag
• Changes in ChangingVehicle:
• Remove both PDActions corresponding to task pickup and task delivery from 

V1
• Place PDAction for pickup and PDAction for delivery at the beginning of V2’s 

plan
• Changes in ChangingTaskOrder
• Instead of swapping places of two tasks, the pickup and delivery locations of a 

chosen task are changed in a plan

4



2. Overview of implementation



Files

• Three files:
• CentralizedTemplate: SLS Algorithm and plan generation
• Candidate: Class that represents a candidate solution, plus operators on it
• PD_Action: Task + pickup flag

6



Candidate: Representation of a solution

• Main information represented in "plan”
• List of sublists for each vehicle
• Each sublist is the plan of vehicle: PDActions in order

• Helper variables “taskList”, “vehicles”
• Cost in “cost”

7



SLS algorithm overview

1. Generate neighbours
2. Choose best neighbour with 

stochasticity
3. Terminate when timeout is 

reached (obtained from 
logist settings)

1
2

3

8



Select initial solution

1. Get the vehicle with largest capacity
2. Assign all tasks to largest vehicle as two 

sequential PD-Actions 1

2

9



Choose neighbours: Changing vehicle

1. For each vehicle, obtain the 
first task of the vehicle

2. Transfer the task to a random 
vehicle with suitable capacity

3. Modify candidate variables 
accordingly

1

2

3
10



Choose neighbours: Changing vehicle (fnc.)

1, 2

3

• Updating taskLists:
1. Create copies of old lists
2. Remove the task from the taskList of 

source vehicle 
3. Place the task in the taskList of target 

vehicle
• Updating plans

1. Create copies of old plans
2. Remove the pickup and delivery 

actions of the task from source 
vehicle plan

3. Insert the pickup and delivery actions 
of the task to the target vehicle plan

• Updating cost
• Compute the difference of costs of 

individual vehicles’ plans from the old 
cost

• No need to recompute everything 11



Choose neighbours: Changing vehicle (fnc.)
• Updating taskLists:

1. Create copies of old lists
2. Remove the task from the taskList of 

source vehicle 
3. Place the task in the taskList of target 

vehicle
• Updating plans

1. Create copies of old plans
2. Remove the pickup and delivery 

actions of the task from source 
vehicle plan

3. Insert the pickup and delivery actions 
of the task to the target vehicle plan

• Updating cost
• Compute the difference of costs of 

individual vehicles’ plans from the old 
cost

• No need to recompute everything

1, 2

3

12



Choose neighbours: Changing vehicle (fnc.)
• Updating taskLists:

1. Create copies of old lists
2. Remove the task from the taskList of 

source vehicle 
3. Place the task in the taskList of target 

vehicle
• Updating plans

1. Create copies of old plans
2. Remove the pickup and delivery 

actions of the task from source 
vehicle plan

3. Insert the pickup and delivery actions 
of the task to the target vehicle plan

• Updating cost
• Compute the difference of costs of 

individual vehicles’ plans from the old 
cost

• No need to recompute everything 13



Choose neighbours: Changing task order

• Choose a random task from 
each vehicle
• Randomly modify candidate 

variables to create a new 
ordering for the chosen task

14



Choose neighbours: Changing 
task order (function)
1. Remove pickup and delivery actions 

associated from the plan
2. Place pickup action in a suitable place
• Loop until we find a place that satisfies weight 

constraints
3. Place delivery action in a suitable place
• Ensure that it is placed after the pickup

• Cost update as it was before

1

2

3

15



Local choice

1. With probability p, return the 
old solution.

2. With probability 1-p, return 
the best among the given set 
of neighbours.

1
2

16



Generating plan from a 
candidate solution
• For each vehicle:

1. Traverse throughout the actions in their plan
2. Add movement primitives to plan
3. Add pickup or delivery primitives depending 

on action type to plan

1

2

3

17


